H=173-16t^2

Simple and best practice solution for H=173-16t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=173-16t^2 equation:



=173-16H^2
We move all terms to the left:
-(173-16H^2)=0
We get rid of parentheses
16H^2-173=0
a = 16; b = 0; c = -173;
Δ = b2-4ac
Δ = 02-4·16·(-173)
Δ = 11072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11072}=\sqrt{64*173}=\sqrt{64}*\sqrt{173}=8\sqrt{173}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{173}}{2*16}=\frac{0-8\sqrt{173}}{32} =-\frac{8\sqrt{173}}{32} =-\frac{\sqrt{173}}{4} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{173}}{2*16}=\frac{0+8\sqrt{173}}{32} =\frac{8\sqrt{173}}{32} =\frac{\sqrt{173}}{4} $

See similar equations:

| 7x^2-4x=-3 | | 3(x-4)+1=2(x+3)x= | | 344.5=29x+54.5 | | 7(2x+1)=12x+10x= | | (x^2-9)^(2/3)=9 | | A=-0.125x^2+2.25x-2 | | 4x^2+6=-9 | | 4x-8-3x-3=0 | | 16-10m=8(-10m+2)-8m | | 7/3d=2/3 | | 7-4x=x-16-3x | | -3-10x-50=47-10x | | 7+4n=-4(1-n) | | 4x-18/6+x/3=x/5-2 | | 1-2x=-(x-7) | | -12(n-4)=48-12n | | -16^2+24t+1300=0 | | 50-10n=-10(4n-8) | | X=5+1000y | | 16^2+64t+14=0 | | 5x+3x-6x=9+3 | | -4x+10−4x+10=-7−7 | | 5t(2t-1)=-5 | | 21=6-x/4x | | ∣x+7∣=5 | | 5(4z+1)-7=178 | | 4x-5+4x-5+78=180 | | 3x-10=22-3x | | 19x-3=2x+150 | | 3(7x−6)2=20 | | 10y-6=17y+43 | | 4(q=2) |

Equations solver categories